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Abstract. In a simple model in which a harmonic oscillator is coupled to massless scalar bosons, we exhibit
poles of matrix elements of the resolvent of the Hamiltonian which differ from those usually attributed to
the excited levels of the isolated oscillator. We give reasons why one should expect such poles in atom-
radiation interaction and explain how their importance depends on the range of the interaction.

PACS. 03.65.-w Quantum mechanics – 32. Atomic properties and interactions with photons

1 Introduction

The representation of atomic excited states has often been
discussed. It is quite generally accepted that they appear
in the theory as poles of matrix elements of the resolvent
of the Hamiltonian and that to each state corresponds one
pole. In fact, this view is built on a series of approxima-
tions.

The first one consists in considering emission or ab-
sorption profiles as infinitely narrow. Quantified excited
states are thus introduced.

The second one consists in a perturbative treatment.
Keeping the notion of excited state just defined, and giv-
ing it a more or less appropriate mathematical equivalent,
this treatment allows Quantum Electrodynamics to yield
characteristics of these states, such as their energies or
their life-times. Calculations are limited to first orders in
certain series in the coupling constant. They exhibit poles
in the complex plane of the spectral parameter, which are
associated to the energy levels of the atom. One often leans
upon these results to conserve a meaning to the notion of
excited state as extracted from the first approximation.

Beyond these calculations, rigorous results have re-
cently been obtained in the non-relativistic case (see
[1–3]). By examining the analytic structure of matrix ele-
ments of the resolvent, the authors are able to construct
complex numbers associated to atomic excited states in
a non-perturbative way. However that structure is only
studied in neighbourhoods of the unperturbed energies of
excited states and the analyticity only proved outside a
cuspidal domain with its vertex at the complex point just
mentioned. Some singularities might exist in regions not
covered by this examination.

Although the cited work might strengthen the con-
viction that excited states do exist, at least mathemati-
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cally, the situation does not appear completely clear to us,
mainly for the reason that atomic levels are not straight-
forwardly derived from spectral lines, if their finite width
is taken into account [4]. We rather believe that their ex-
istence, and their treatment by Quantum Mechanics or
even in QED, might appear as a kind of approximation
of order zero, fairly accurate for negligible width but un-
satisfactory otherwise. Such an approximation might also
obscure certain theoretical aspects. For these reasons we
feel that further study of the poles of matrix elements of
the resolvent is of interest.

The simple model of a harmonic oscillator coupled with
massless scalar bosons allows one to take a step in that
direction.

The Hamiltonian is

H(λ, µ, g) = a∗a⊗ 1 + 1⊗ µHrad

+ λ(a∗ ⊗ c(g) + a⊗ c∗(g)). (1)

We suppose ‖g‖2 = 1. We will obtain information on poles
of matrix elements of the resolvent of H(λ, 1, g). The pa-
rameter µ has been introduced because the spectrum of
H(λ, 0, g) is easy to derive, some properties of the resol-
vent of H(λ, µ, g) for small µ being then obtained by con-
tinuity [5,6]. This will give us a starting point for deriving
the analytic structure of the matrix elements for greater
values of µ.

More precisely, let us denote the fundamental and ex-
cited states of the oscillator by |0〉, |1〉, . . . |n〉, as well
as the corresponding states of the oscillator-field system
when the field is in the vacuum state |Ωrad〉, since there
will be no ambiguity in the context. It is easy to see that
〈1|[H(λ, µ, g) − z]−1|1〉 has a pole near −d(λ) ∼ −λ2

for λ small and µ small (see Proposition 1). It is not
the one associated with the first excited state, which is
near 1. In preceding studies [5,6], we also exhibited a
pole of 〈2|[H(λ, µ, g)−z]−1|2〉 near 1, in the second sheet,
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for λ small and µ smaller than a certain value, depend-
ing on λ. The important point is of course that this pole
is not the pole of 〈1|[H(λ, µ, g)− z]−1|1〉. More generally,
matrix elements 〈n|[H(λ, µ, g)− z]−1|n〉 would give other
poles in that region, poles that still differ from the one
associated with the excited level of energy 1. The problem
we are interested in is: what becomes of these poles when
µ increases up to 1?

Besides the fact that the mathematical problem may
have an interest in itself, one may find a motivation for
seeking an answer to the above-mentioned question when
we transpose it in the atom-radiation case, replacing ex-
cited states of the oscillator by excited states of the atom.
Do poles that are likely to be present when µ is small sur-
vive when µ reaches the value 1? Let us note that if they do
not disappear, a conjecture which our study makes plausi-
ble, they are usually ignored. This can be justified by the
following argument. Indeed, what matters is the magni-
tude of their imaginary part as compared to the width of
the resonances. We will see that one can expect this ra-
tio to be large in Electrodynamics. But these poles might
become important at scales where the linewidths are large.

To elucidate this question, we will consider
〈1|[H(λ, µ, g) − z]−1|1〉 and study the motion of the
poles in z when µ increases from 0 to 1, and particularly
that of the one which is close to −d(λ) for µ close to 0.
Among the poles of all the above mentioned matrix ele-
ments, this one is particularly important since, according
to a remark by Arai, the Hamiltonian of the model can
be deduced directly from its restriction to the subspace
generated by the vectors |1〉 ⊗ |Ωrad〉 and |0〉 ⊗ |ϕ〉,
ϕ ∈ D(Hrad) [7]. We will follow the displacement of this
pole. The result of our study, Proposition 2, will be to give
a function g for which this pole of 〈1|[H(λ, µ, g)− z]−1|1〉
does not disappear for µ = 1. We will relate it to a pole of
that particular g. Proposition 1 recalls the situation for µ
small. It has to be noted that the existence for µ small of
such a pole of 〈1|[H(λ, µ, g) − z]−1|1〉 has nothing to do
with the singularities of g, at least at first sight.

2 The result. A sketch of the proof
and a numerical example

The poles of 〈1|[H(λ, µ, g) − z]−1|1〉 are the zeros of
f(λ, µ, .), defined for z ∈ C\IR+ by

f(λ, µ, z) := 1− z − λ2

∫ ∞
−∞

g2(p)
µ|p| − z dp. (2)

For µ 6= 0, f(λ, µ, .) is multi-valued. Assuming that g is
meromorphic, real, with possibly a finite number of non-
real poles pi, we can get the value at a point z 6= µ|pi|,
z 6= 0, after crossing the cut once counterclockwise, by
a contour deformation and this value will be denoted by
f+(λ, µ, z). We will assume that

C1 :=
∫ ∞
−∞

g2(p)
|p| dp <∞

and

C2 :=
∫ ∞
−∞

g2(p)
|p|2 dp <∞.

The starting point of our analysis is the following propo-
sition which recalls well-known properties of f , especially
its zeros for small µ. The important point is that whereas
one zero is close to 1 if λ is small, there exists another one,
close to 0. More precisely,

Proposition 1
f(λ, 0, .) is defined except at the pole z = 0. On
] −∞, 0[, it vanishes at z0(λ, 0) := −d(λ), where d(λ) =
2−1(
√

1 + 4λ2 − 1). If 0 < µ ≤ C1λ
2, then, on ] −∞, 0],

f(λ, µ, .) vanishes at one point denoted by z0(λ, µ). With
the above value for µ = 0, z0(λ, .) is a continuous and
increasing function on [0, C1λ

2] which vanishes for µ =
C1λ

2. If µ > C1λ
2 and x ≤ 0, f(λ, µ, x) 6= 0 and

f+(λ, µ, x) 6= 0.
Our main task is to follow this zero of f(λ, µ, .) as

µ increases beyond the value µc(λ). A difficulty is due to
the fact that, for µ = µc(λ), the function z0(λ, .) reaches a
branch point of f(λ, µ, .). This forces us to use analyticity
properties of f(λ, µ, .) with caution. Due to this fact, we
will be able to give an answer only in a case where we have
an explicit expression for f . This will be possible with the
function g below which allows the integration in (2) to be
done explicitly. In the whole section we set

g(p) =
√

2/π
p

1 + p2
· (3)

In spite of its particularity, this choice has its interest from
the physical point of view. Indeed, in Quantum Electro-
dynamics, functions which play the role of g are ratio-
nal. Their poles may be given a physical meaning (see
Sect. 3.4.1). With this choice of g, it will be interesting
to look at the role played in our problem by poles of such
functions.

For this particular g, our result is the following. We
are able to follow the paths of four zeros of the multi-
valued (if µ 6= 0) function f(λ, µ, .) as µ varies. The two
important ones for us are denoted by z0(λ, µ) and z1(λ, µ).
Two others are denoted by z0,+(λ, µ) and z′0(λ, µ).

• The first one is the complex number associated to the
first excited state of the harmonic oscillator. We de-
note it by z1(λ, µ); it varies continuously from its value
z1(λ, 0) = 1 + d(λ). Its path when µ increases from 0
to 1 lies entirely in the second sheet, that is to say
z1(λ, µ) is in fact a zero of f+(λ, µ, .). There is nothing
new for that zero.
• The second one, which we denote by z0(λ, µ), may be

considered as associated to a kind of bound state, the
fundamental state of the oscillator accompanied by one
photon. It is the zero we focus on in the paper. We
already mentioned it for µ ≤ µc(λ) in Proposition 1,
and it can be traced from its value −d(λ) for µ = 0 to
its value for µ = 1, across the value 0 for µ = µc(λ) =
(2/π)λ2. This path has to be described with caution
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Fig. 1. Paths of zeros of f(λ, µ, .) (multi-valued if µ 6= 0) when
µ varies from 1 to 0.

since it crosses the branch point of f . z0(λ, µ), starting
from the value z0(λ, 0) = −d(λ), stays in the principal
sheet, that is to say is a (real) zero of f , until µ reaches
the value µc(λ) where it comes to the branch point 0;
then it enters the second sheet where it becomes a zero
of f+(λ, µ, z), the continuation of f(λ, µ, .) across the
cut, which has to be considered only if λ 6= 0 and
µ 6= 0. This zero is linked to the pole of g, because the
pole of g at p = −i produces a pole of the integral in (2)
in the second sheet at z = −iµ, and, as a consequence,
leads to f+ having a zero distinct from the one which is
close to 1, when λ is small (this zero may be expected
to be close to the pole of the integral, when λ is small).
• The path of the third one, z0,+(λ, µ), is also linked to

the pole of g, although its existence for µ small does
not depend on this pole (this is also true for z0(λ, µ)).
This zero is analogous to the preceding one, but is a
zero of f+ instead of f . For small µ, as the two deter-
minations f and f+ at the same point z do not differ
much, the zeros z0(λ, µ) and z0,+(λ, µ) of these two
branches are neighbouring; they move apart when µ
increases. z0,+(λ, µ) tends to −d(λ) when µ goes to 0
and does not have any particular value for µ = µc(λ).
z0(λ, µ) and z0,+(λ, µ) are close to the (double) pole
of the integral, when λ is small.
• A fourth one is denoted by z′0(λ, µ). It does not exist

for µ = 0, but tends to 0 when µ goes to 0, and also
when µ goes to µc(λ).

The paths described by these zeros when µ varies from
0 to 1 are shown in Figure 1.

More precisely, our result may be stated in the follow-
ing terms.

Proposition 2
Let g(p) =

√
2/πp/(1 + p2). Denote Σ− := {z; |z| ≤

2, =z ≤ 0}.

(1) If λ = 0, f(λ, µ, .) has one and only one zero; it is at
z = 1.

(2) There exists λmax > 0 such that, if 0 < λ < λmax,
then,
(a) for µ = 0, f(λ, µ, .) is mono-valued and has two

zeros: z0(λ, 0) = −d(λ) and z1(λ, 0) = 1 + d(λ);
(b) for 0 < µ < µc(λ) = (2/π)λ2, f(λ, µ, .) has one zero

z0(λ, µ) on IR− and, inΣ−, f+(λ, µ, .) has three and
only three zeros, z1(λ, µ), z0,+(λ, µ) and z′0(λ, µ),
satisfying

lim
µ→0+

z1(λ, µ) = 1 + d(λ),

lim
µ→0+

z0,+(λ, µ) = −d(λ),

lim
µ→0+

z′0(λ, µ) = 0, lim
µ→µc(λ)

z′0(λ, µ) = 0;

(c) for µc(λ) ≤ µ ≤ 3/2 and z ∈ Σ−, f+(λ, µ, .)
has three zeros, z1(λ, µ), z0(λ, µ) and z0,+(λ, µ),
which are continuous functions on [µc(λ), 3/2].
z0(λ, µc(λ)) = 0; thus z0(λ, µ) connects to the
zero of f described in Proposition 1 when 0 ≤
µ ≤ µc(λ). z0,+(λ, µc(λ)) 6= 0. Besides, for fixed
non-zero µ, lim

λ→0
z1(λ, µ) = 1, limλ→0 z0(λ, µ) =

limλ→0 z0,+(λ, µ) = −iµ.

2.1 A sketch of the proof

We only give here a sketch of the proof in order not to enter
too much into technicalities. Some are unavoidable. They
are due to the fact that the branch point at z = 0 prevents
us from using analyticity of f(λ, µ, .) (and continuity with
respect to µ) to follow the zeros by continuity, according to
Hurwitz theorem. Indeed, some of them go to zero when
µ varies in a neighbourhood of µc(λ) or of 0. It is thus
necessary to introduce small (closed) disks Dr around z =

0, setting Σr
− := Σ−\

◦
Dr.

The study of zeros of f+ is replaced by the study of
zeros of N+(λ, µ, .), the analytic continuation across the
positive real axis of N(λ, µ, .), which is defined, for µ =
0, by

N(λ, 0, z) := z(z(1− z) + λ2) (4)

and, for µ 6= 0, by

N(λ, µ, z) := (z + iµ)2f(λ, µ, z). (5)

We already mentioned that, for µ 6= 0, f+(λ, µ, .) has a
(double) pole at z = −iµ, a consequence of the existence
of a pole of g at p = −i. This is why the multiplication of f
by (z+iµ)2 does not introduce spurious zeros of f+, except
for µ = 0. (Of course it introduces zeros of N at z = −iµ,
which are not zeros of f . We are not concerned with those.
However, when λ is small, the difference between N+ and
N being then small, the zeros of N+ are close to these
zeros z = −iµ of N .) One has

N(λ, µ, z) : = µ(
2λ2

π
− µ) + z

(
z(1− z) + λ2

+ µ(µ+ 2i(1− z)) +
4λ2

π
b(µ, z)

)
, (6)
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with b(µ, z) defined in C\IR+ by b(µ, iµ) := −i/2 and

b(µ, z) = −µ 1
z − iµ

+ µ
z

(z − iµ)2
log z

− z

(z − iµ)2
µ log(iµ), for z 6= iµ. (7)

In this formula, the branch point of f , and thus of N ,
at z = 0 appears in the logarithm, taken with log z =
log |z|+ i arg z, with 0 < arg z < 2π.

The study of zeros of N+(λ, µ, .) is carried with the
help of two tools. One is the formula

nγr := (2iπ)−1

∫
γr

∂zN+(λ, µ, z)
N+(λ, µ, z)

dz, (8)

which gives the number of zeros ofN+ inside the boundary
γr of Σr

−, provided N+(λ, µ, .) does not vanish on γr. The
other one is Rouche’s theorem. N+ being written as the
sum of a main part N+ −∆ and a correction ∆, this the-
orem relates the number of zeros of N+ to the number of
zeros of N+−∆, inside a contour on which |∆| < |N+−∆|
is true. Several decompositions will be used, in which the
zeros of N+ −∆ will be more easily controlled that those
of N+.

We distinguish three cases, according to whether µ >
µc(λ), µ = µc(λ), or µ < µc(λ).

(i) µ > µc(λ). Due to the non-zero distance between
µ and µc(λ), we can show that there exists a value λmax

of λ such that, for (λ, µ) in R := {(λ, µ); 0 ≤ λ ≤ λmax,
µc(λ) < µ ≤ 3/2}, then N+(λ, µ, .) does not vanish on γ;
moreover there exists ε(λ, µ) > 0 such that for (λ, µ) ∈ R,
N+(λ, µ, .) does not vanish in Σ− ∩ Dε(λ,µ), and conse-
quently does not vanish on γε(λ,µ). Then we can define

nγ,ε(λ,µ)(λ, µ) := (2iπ)−1

∫
γε(λ,µ)

∂zN+(λ, µ, z)
N+(λ, µ, z)

dz. (9)

It is the number of zeros of N+ inside γε(λ,µ), which is also
the number of zeros of N+ inside γ. We simply denote this
quantity by n(λ, µ). It can then be shown that n(., .) is
continuous at each point (λ0, µ0) of R. And thus it is a
constant. Since nγ(0, µ) = 3, the number of zeros of N+

inside Σ− is three.
Let us denote these three zeros by z0(λ, µ), z0,+(λ, µ)

and z1(λ, µ). From Hurwitz theorem, they are continuous
functions of (λ, µ) in R. For non-zero fixed µ, we shall de-
note the zero satisfying lim

λ→0
z1(λ, µ) = 1 as z1(λ, µ), and

z0(λ, µ) and z0,+(λ, µ) will denote the two other zeros,
satisfying lim

λ→0
z0(λ, µ) = lim

λ→0
z0,+(λ, µ) = −iµ. The affec-

tation of the notations z0(λ, µ) and z0,+(λ, µ) to the two
zeros will be made precise later on.

(ii) µ = µc(λ). It is clear from (6) that z = 0 is a zero
of N+(λ, µc(λ), z). The others are those of the function

h+(λ, z) : = z(1− z) + λ2 + µc(λ)(µc(λ) + 2i(1− z))

+
4λ2

π
b+(µc(λ), z), (10)

C
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Fig. 2. The contour C used in the application of Rouche’s
theorem.

which is continuous at z = 0, in the sector Σ−. (The index
+ in functions indicates one crossing of the positive axis.)
We are going to prove the following statement (A): if µ,
greater than µc(λ)+, is in a sufficiently small neighbour-
hood V of µc(λ), then one and at most one zero of N+

inside Σ− lies in a certain disk
◦
Dr(λ), the radius of which

does not depend on µ in V. It is this zero which has been
denoted by z0(λ, µ). This will imply that the two other ze-

ros we found before are outside
◦
Dr(λ), and, therefore will

stay in that region when µ→ µc(λ)+. We will thus get the
three zeros of N+ inside Σ−, in the case µ = µc(λ): two
outside Dr(λ) and one at 0. To prove (A), we use Rouche’s
theorem, noting that, for z 6= iµ, N+ may be written as
the sum Q(λ, µ, z) +∆(λ, µ, z) of a rational function

Q(λ, µ, z) := µ(µc(λ) − µ) + zQ1(λ, µ, z), (11)

where

Q1(λ, µ, z) := z(1− z) + λ2 + µ2 + 2iµ(1− z)

− 4λ2

π

µ

z − iµ
− 4λ2

π
µ log(iµ)

z

(z − iµ)2
, (12)

and a multi-valued part

∆(λ, µ, z) :=
4λ2µ

π

z2(log z − 2iπ)
(z − iµ)2

· (13)

This enables us to relate the zeros of N+ to those of
Q(λ, µ, z). The closed contour C in Rouche’s theorem is
constructed in such a way that it leaves the singularity
z = 0 outside, Q(λ, µ, .) vanishes only once inside C and
|∆| < |Q| on C. C is made of four parts Ci which are
drawn in Figure 2. (On this figure the contour does not
lie in Σ− since the part C4 is not on the positive real axis
but moved on a ray making a certain positive angle θ1 with
this axis. This complication, which forces us to introduce
a new notation f̂ , the continuation of f+ inside the con-
tour, is due to the fact that we do not know how to prove
|∆| < |Q| on the reals. So, in the following, Σ− should in
fact be replaced by Σθ1,0 (see Fig. 1 for the notation) and
N+ by N̂ . But N does not vanish for =z > 0).
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An other property that C has to satisfy in order to get
(A) is that N+ does not vanish inside Σ−∩Dr′(λ,µ). Since
z0(λ, µ) is expected to reach 0 when µ→ µc(λ)+, the con-
tour has a part C3 which depends on µ and shrinks to 0
when µ → µc(λ). The proof of the inequality |∆| < |Q|
uses the behaviour of ∆ for small z and supposes that
the contour C containing the zero is contained in a small
neighbourhood of 0, which is achieved by taking µ suffi-
ciently close to µc(λ). Since it is a bit technical, this proof
is not reproduced here. On this line, the number of zeros
of N+ (in fact N̂) inside C can be proved to be one and
therefore (A) is proved.

(iii) µ < µc(λ). We again look at the number of zeros of
N+ by means of formula (9), but this time using continuity
with respect to µ, in particular at µ = 0. The fact that for
µ = 0, one of the zeros of N+ is on the real negative axis
and another one on the positive axis forces us to enlarge
Σ− to Σθ1,θ2 . A complication comes from the fact that
each end of the interval [0, µc(λ)[ produces a zero at z = 0.
This forces us to separate the study in three parts.

For µ in a neighbourhood of 0, formula (6) leads us
to expect a zero of N+ near z = 0. Let us sketch how
one can prove its existence. By looking at the zeros of the
approximating function

Fapp(λ, µ, z) : = λ2

(
−2µ3

π
− 2z2µ

(
i +

1
π

)
+z(z − iµ)2 +

4µ
π
z2

(
log

z

µ
− 2iπ

))
,

which is homogeneous in (µ, z), and applying Rouche’s
theorem, we can show that for any ρ ∈]0,min{1, λ2/12}], if
µ is smaller than a certain µ2(ρ), N+(λ, µ, .) does not van-
ish on the boundary of Σθ1,θ2\Dρ; the integral in (9) thus
makes sense on this contour. If N+(λ, µ, .) is restricted
to Σθ′1,θ′2 for some sufficiently small θ′1, θ

′
2, it can also be

shown that inside Dρ, N+(λ, µ, .) has exactly one zero,
z′0(λ, µ). Outside Dρ, the number of zeros of N+(λ, µ, .) is
two (by continuity because it is 2 for µ = 0). These two
last zeros are denoted by z0,+(λ, µ) and z1(λ, µ). On the
whole, we thus have three zeros: z0,+(λ, µ), z1(λ, µ) and
z′0(λ, µ) for µ close to zero. They are in fact in Σ−.

For µ in a neighbourhood of µc(λ), i.e. for ε(λ, µ) :=
µc(λ) − µ small and positive, we may also expect a zero
of N close to 0, from (6). To prove its existence we lean
upon the existence in this region of a zero of the following
neighbouring function:

Napp(λ, µ, z) : = (µc(λ)− µ)µ

+ z
(
λ2 + µ2 − 2i(µc(λ)− µ)

)
.

We have N+(λ, µ, z) = Napp(λ, µ, z)+z2 R(λ, µ, z), where

R(λ, µ, z) = 1− z − 2iµ

+
4λ2

π

(
i

z − iµ
+
µ log z − 2iµπ − µ log(iµ)

(z − iµ)2

)
.

For α > 0, zαR(λ, µ, .) is bounded in Σθ1,θ2 , uniformly for
µ in a neighbourhood of µc(λ).

Napp(λ, µ, .) has a unique zero located at

ẑ′0(λ, µ) := − ε(λ, µ)
λ2 + (µc(λ) − ε(λ, µ))2 − 2iε(λ, µ)

µ.

The zero of N+(λ, µ, .) is then deduced by Rouche’s the-
orem in the following way. For 0 < η1 < η2, we denote
by Aη1,η2 the closed piece of ring limited on the one hand
by the two circles of radii respectively η1 and η2 and on
the other hand by the semi-axis θ1 and θ2 of Figure 1. For
µ ∈ [(1/2)µc(λ), µc(λ)[, ẑ′0(λ, µ) lies inside Aε1(λ,µ),ε2(λ,µ),
where

ε1(λ, µ) :=
1
π

1
2 + 4λ2/π2

ε(λ, µ)

and ε2(λ, µ) := (2/π)ε(λ, µ).

We can show that there exists η such that, for µ ∈ [µc −
η, µc[ (which implies η > ε2(λ, µ)), and z on the boundary
of Aε1(λ,µ),η ⊃ Aε1(λ,µ),ε2(λ,µ),∣∣∣∣ z2R(λ, µ, z)

Napp(λ, µ, z)

∣∣∣∣ < 1.

So, by Rouche’s theorem, N+(λ, µ, z) has one and only
one zero inside Aε1(λ,µ),η. As∣∣∣∣ z2R(λ, µ, z)

Napp(λ, µ, z)

∣∣∣∣ < 1

is also true for |z| < ε1(λ, µ), this zero is the only one in
Σ− ∩Dη. For the moment we call it z′′0 (λ, µ), but we will
see that it can be linked to z′0(λ, µ) precedingly defined on
[0, µ2(ρ)]; then it will simply be called z′0(λ, µ). As we can
also prove that ∣∣∣∣ z2R(λ, µ, z)

Napp(λ, µ, z)

∣∣∣∣ < 1

on the boundary of Aε1(λ,µ),ε2(λ,µ), z′′0 (λ, µ) lies in fact
inside Aε1(λ,µ),ε2(λ,µ) and thus goes to 0, when µ goes to
µc(λ). At this stage, we got two germs of zeros located at
z = 0, one for µ = 0 and one for µ = µc(λ). Two other
zeros z0,+(λ, .) and z1(λ, .) arise by continuity from the
non-zero values z0,+(λ, µc(λ)) and z1(λ, µc(λ)) obtained
in (i). The fact that there are no other zeros in Σ− than
these three will be a consequence of what follows.

Let us now consider intermediate values of µ, more pre-
cisely µ ∈ [(1/2)µ2(η), µ0] with µ0 ∈ [(1/2)µ2(η), µc(λ)[,
η being defined above. (6) shows that there exists an
ε(µ0) such that N+ does not vanish inside a disc of ra-
dius ε(µ0). In Σ−\Dε(µ0), a region on the boundary of
which N+ does not vanish, the number of zeros is a con-
tinuous function of µ, and thus a constant function. For
µ ∈ [(1/2)µ2(η), µ2(η)], we saw that this constant value is
3. So it is still 3 all over the interval [(1/2)µ2(η), µ0]. Let
us make their locations a bit more precise.

One and only one of the zeros has been seen to be in-
side Dη, for µ in ](1/2)µ2(η), µ2(η)] (we called it z′0) or
in [µc(λ) − η, µc(λ)] (we called it z′′0 ). The two intervals
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Table 1. Approximate values of the zeros of N as µ varies.

µ 103z0(λ, µ) 103z0,+(λ, µ) 103z′0(λ, µ) 103(z1(λ, µ)− 1)

10−5 −9.82 −9.82 − 0.1i −0.0018 − 0.0018i ∼ 9.90

10−4 −9.36 −9.44 − 0.8i −0.018 − 0.017i 9.91− 0.004i

0.001 −6.8 −11− 6i −0.17 − 0.16i 10− 0.04i

0.005 −1.1 −17− 15i −0.41 − 0.26i .

0.006 −0.3 −18− 17i −0.21 − 0.066i .

0.0063 −0.04 −18− 17i −0.043 − 0.003i .

µc 0 −18− 17i 0 .

0.007 0.4 − 0.06i −18− 18i third sheet (?) .

0.01 1.8− 0.9i −21− 22i . 10− 0.4i

0.1 24− 69i −43− 128i . 11− 4i

0.5 75− 443i −85− 544i . 5− 13i

1 110− 949i −110− 1041i . −4− 10i

are a priori disjoint. Let us explain now how the two func-
tions z′0(λ, .) and z′′0 (λ, .) can be joined continuously. We
can show that there exists r > 0 such that, for µ vary-
ing in ]0, µc(λ)], the circle with radius r is not crossed by
the paths of the zeros of N+(λ, µ, z) in Σ−; for small µ,
z0,+(λ, µ) is outside the circle and z′0(λ, µ) is inside. Thus
z′0(λ, .) and z′′0 (λ, .) can be patched into a unique function
z′0(λ, .) which values stay inside the circle. Thus the three
zeros of N+, z0,+(λ, µ), z1(λ, µ) and z′0(λ, µ), that we saw
for µ small extend as functions of µ in ]0, µc(λ)], being the
only zeros of N+ in Σ−.

The continuity with respect to µ in [0, 1] of the three
functions z0(λ, µ), z0,+(λ, µ) and z1(λ, µ) is a consequence
of Hurwitz theorem, except for the continuity of z0(λ, µ)
at µc(λ) which is seen directly. In the same way, it can be
shown that z′0(λ, µ) is continuous on ]0, µc(λ)[. This ends
the sketch of the proof.

Let us now make a comment about what happens at
µ = µc(λ). We saw that the two parts µ < µc(λ) and
µ > µc(λ) of z0(λ, .) meet at 0 for µ = µc(λ). But z′0(λ, .)
(which so far we only defined for µ < µc(λ)) also goes
to 0 when µ goes to µc(λ). If µ describes half a circle in
the upper half-plane near this critical value µc(λ), we can
define extensions in the complex of the functions z0(λ, .)
and z′0(λ, .). Although we have not completely proved it,
we expect that the extension of z0(λ, .) connects two pieces
in two parts of the function z0(λ, .) we defined for real µ,
while the extension of z′0(λ, .) would branch on a zero of
f++ for µ ≥ µc(λ). (f++ is the continuation of f in the
lower half-plane after two crosses of the positive axis.) The
study in the complex would thus legitimate our choice of
what we called z0.

The paths followed by the zeros are depicted qualita-
tively in Figure 1. In the next section, we illustrate the
motion as µ varies of the zeros we found by taking a par-
ticular value for λ.

2.2 A numerical example

We nail down λ to λ = 10−1.
Then µc = 2/100π ∼ 0.0063662 and d(λ) =

2−1(
√

1 + 4λ2 − 1) ∼ 0.00990125. Approximate values of
the zeros obtained by computer are given in Table 1.

3 Conclusion, comments and perspectives

3.1 The result

By our example, we progressed towards an answer to the
question asked at the end of the Introduction, by prov-
ing the following. Matrix elements of the resolvent of
H(λ, 1, g) may have poles not usually associated to the
excited states of the uncoupled oscillator. In Section 2,
it was proved that one of these poles, z0(λ, 1), could be
traced continuously as a pole of a matrix element of the
resolvent of H(λ, µ, g), µ varying from 0 to 1. For µ small,
we try to give these poles a physical interpretation in
Section 3.2.

Although this property has only been proved for a par-
ticular g, it may be expected more generally, in view of
formulas (2), that a pole p = p0 of g in the complex
plane is to create zeros of f+ and consequently poles of
〈1|[H(λ, µ, g)− z]−1|1〉 near z = p0 (consider for instance
the model f(λ, z) = 1 − z − λ2(z − p0)−1, where a pole
of f at z = p0 creates a zero of f , close to p0 if λ is
small, and thus a priori distinct from 1). Thus poles of
g are particularly important. Therefore we will suppose
in the following that our result does not depend much on
the form of the function g and extends to functions more
general than g(p) =

√
2/πp(1 + p2)−1.

With this assumption, for a class of rational g’s, ma-
trix elements of the resolvent of the Hamiltonian would
exhibit two kinds of poles. The first kind would consist
of the poles usually associated to the levels of the uncou-
pled oscillator. We focused on the first level. The second
kind of poles would consist of poles related to poles of g,
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in the same way as z0(λ, 1) and z0,+(λ, 1) are related to
the pole −i in the example we treated. It could be asked
whether z0(λ, 1) and z0,+(λ, 1) would not simply be ac-
cidents due to the non analyticity of g, with no physical
meaning (incidentally, this view would suppose that poles
of g do not have any physical meaning; we will discuss this
point later on in Sect. 3.4.1). Against that possibility, let
us remark that the existence of z0(λ, µ) for µ ≤ µc(λ) is
proved in Proposition 1 under quite general conditions on
g. The fact that possible poles of g do not play any role in
that proof seems to indicate that the pole z0(λ, µ) is not
“accidental”.

3.2 An interpretation

For small µ, we already proposed an interpretation for the
presence of that pole (see [6]). It was based on a continuity
argument and on the spectrum of H(λ, 0, g). Indeed, for
µ = 0, 0 is an infinitely degenerated eigenvalue of a∗a⊗ 1
which splits with the perturbation λ(a∗⊗c(g)+a⊗c∗(g)).
The two eigenvalues 0 and z0(λ, 0) are distinct points in
the set generated by this splitting. The situation for µ
small may be guessed by continuity. In other words, if
we consider a 1-boson state of the oscillator-field system,
|0, γ〉, and the state |0, Ωrad〉 (the comma replaces a tensor
product), we see that, if the energy of the boson is small,
these two states have neighbouring energies and the inter-
action separates them, due to the coupling between |0, γ〉
and |1, Ωrad〉 by absorption of one boson.

An other point of view may cast some light. The eigen-
values of (1) are the same as those of

H(λ, 1, gµ) = a∗a⊗ 1 + 1⊗Hrad

+ λ(a∗ ⊗ c(gµ) + a⊗ c∗(gµ)), (14)

where gµ(p) := µ−1/2g(µ−1p). Restricted to the space of
states with at most one boson, the model is the one consid-
ered in [8], if the extra µ-dependence that we introduced
is ignored. With that change of the Hamiltonian, the µ-
dependence permits to vary the half-height width of the
coupling function, since

width(gµ) = µwidth(g). (15)

The function which now plays the role of what we called
fg(λ, µ, z) (we make the dependence of (2) in g explicit)
is f1(λ, µ, z) := fgµ(λ, 1, z). Making µ small amounts to
considering a coupling function λgµ peaked near 0; for the
coupling with the oscillator, the continuum may thus be
said to be nearly reduced to a unique discrete state, and
as a consequence, the evolution of the state |1, Ωrad〉 close
to a Rabi oscillation between 2 states. One of them is the
eigenvector of (14) corresponding to z0(λ, µ).

Our study allows to follow this eigenvalue which moves
into the complex plane when µ increases, that is to say
when the continuum is enlarged.

The same mechanism would operate for other eigenval-
ues. In reference [6], we were concerned with the eigenvalue
1. The 1-boson state |1, γ〉 and the 0-boson state |1, Ωrad〉

z0

z1z1

z0 < 0 z0 < 0

z0 < 0

z1

z1

z0
z1

1

~ 1

~ 1

λ

µ

= 0

µ = C λ1
2
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~ - i

√
π
2

Fig. 3. Dependence with respect to (λ, µ) of the two main
zeros of f(λ, µ, .).

have neighbouring energies if the energy of the boson is
small. The interaction splits up the degeneracy and that
would reflect in the presence of two distinct poles near 1,
one being the usual pole of 〈1|[H(λ, µ, g) − z]−1|1〉, the
other being a pole of 〈2|[H(λ, µ, g)− z]−1|2〉.

3.3 Connection with critical and strong coupling

The expression (14) allows to connect our study to the
discussion in [8] which concerns the effect of the coupling
strength λ on the type of time evolution of probabili-
ties amplitude in the Friedrichs model. In [8], one finds
a graphic study of the zeros of the function <f1, on the
real axis. A property that is contained in Proposition 1
plays a role in that study: there exists a critical value
λc(µ) = (µ/C1)1/2 of λ, for which <f1(λ, µ, 0) = 0, and
such that, for λ > λc(µ), <f1(λ, µ, .) has a negative zero,
which is in fact a zero of f1(λ, µ, .). The critical relation
between λ and µ appeared in our study under the form
µ = µc(λ). The zero is interpreted in [8] in the following
way. µ being fixed (equal to 1, in fact), as the coupling con-
stant λ increases from 0 to a value slightly greater than
λc(µ), the energy of the first excited state is lowered from
1 to a value which becomes negative after λ crosses λc(µ);
it is the energy of a stable state. This interpretation should
be reconsidered in the light of our result, which concerns
zeros of f1 instead of real zeros of <f1.

Our study seems to indicate that the zero of f1 which
becomes real negative when λ increases from 0 to a value
greater than λc(µ), µ being constant, is z0(λ, µ), rather
than z1(λ, µ). z1(λ, µ) moves in the second sheet. z0(λ, µ)
is not considered in [8] for small coupling, but probably
manifests its effects in the position of the zeros of <f1

observed for strong coupling. This point should be ex-
amined more thoroughly in a future study. In any case,
the presence of one or three zeros of <f1 on the real
line is not incompatible with f1 having only two zeros
in the complex plane, as can be seen on the example
f(λ, µ, z) = z−1+λ(z− iµ)−1. (Remember the third zero,
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z0,+(λ, µ), is not a zero of a third type since it is a zero of
f1,+, a continuation of f , connected with z0(λ, µ)). Fig-
ure 3 indicates roughly the position in the complex plane
of the two zeros, according to different values of (λ, µ).

3.4 A possible generalisation

3.4.1 The atom-radiation interaction

We believe the result we obtained in the model of the
harmonic oscillator may be interesting in the case of the
coupling of the atom with the electromagnetic field. Since
the argument of Section 3.2 could be transposed to the
atom-radiation case, it seems likely to us that the result
we obtained for the Hamiltonian (1) and the particular
function g should extend, not only to more general g but
to the photon-atom Hamiltonian.

In this more physical context, we will now indicate
where a singularity of g may come from, whether it has a
physical origin and where it could be located in the energy
complex plane.

An example of a matrix element of the Hamiltonian
and its poles
Let us now consider an atom. Let |f〉 denote its fundamen-
tal state with energy Ef , |e〉 an excited state with energy
Ee, and consider the emission of a photon with energy E
and quantum numbers j,m.

e→ f + |E, j,m〉.

As a model for studying that transition, one may use the
Hamiltonian

(Ef |f〉〈f |+Ee|e〉〈e|)⊗ 1 + 1⊗Hrad

+ |f〉〈e| ⊗ c∗(g) + |e〉〈f | ⊗ c(g),

with g(k) :=
(
〈f | ⊗ 〈|k|, j,m|

)
H
(
|e〉 ⊗ |Ωrad〉

)
. Such ma-

trix elements are given for example in [9]. For the hydrogen
atom, e being the level n = 2 with j = 1, m = 0, g(E) is
shown to be proportional to

E

[(1 + (2a~−1c−1E/3)2]2
, (16)

where a is the Bohr radius. Here the pole of g in
=z ≤ 0 is purely imaginary and the order of magnitude of
its modulus is 5 keV. It is far greater than the width of the

atom states. That is why the poles of the matrix elements
of the resolvent which it would generate could be ignored.
But although the effect is small, taking it into account
might be of interest from the theoretical point of view.

Position of the poles of g and atomic distances
The connection between the distance to the real axis of
the poles of g and the atomic distances may be seen more
generally as follows. Let ψ0 be the wavefunction of the
fundamental state and ψ1 that of a given excited state.
Assuming the photon to be scalar, the matrix element
g(k) := 〈0, k|H|1〉 is proportional to the Fourier transform
of the function ψ0(r)∂rψ1(r), and thus the imaginary parts
of the poles are connected with the spatial extension of the
wavefunctions. Hence they have a physical meaning.

3.4.2 A possible application in nuclear physics

The situation is different if the quantity a in formula (16),
or the spatial extension of the states, is no more of the
order of the Angstrom but rather of that of the Fermi. A
mechanism similar to the one we exposed could then pro-
duce poles of the resolvent matrix elements the imaginary
parts of which would now correspond to energies of the or-
der of 1 F−1 instead of 1 Å−1. They are now of the same
order of magnitude as the width of certain resonances. As
an example, the resonance γp at 1500 MeV has a width
of the order of 100 MeV. In such a situation, the corre-
spondence resonance-pole would be altered in a significant
way.
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tions, EDP Sciences, Paris, 1988), pp. 233-248 (English
translation: J. Wiley, New York, 1992).

9. H.E. Moses, Lett. Nuovo Cimento 4, 51 (1972).


